James Bond, alcoholic


Merry Christmas to everyone. As usual for this blog at this time of year, for your Christmas reading we will take a look at a particular aspect of human consumption, in this case alcohol.

James Bond was created in 1953 by Ian Fleming (who also created Chitty-Chitty-Bang-Bang, The Magical Car), and over a 14-year period there was a series of 12 novels and two short-story collections. The rights to the character were purchased for the film world in the 1960s, so that over the past 50 years we have had a franchise of 24 official films, plus two other licensed ones (Casino Royale in 1967, and Never Say Never Again in 1983).

Actually, the first licensed Bond film was a long-forgotten one made for CBS TV in 1954. This was a 1-hour version of Casino Royale, starring Barry Nelson as Bond, Peter Lorre as Le Chiffre, and Linda Christian as a renamed Vesper Lynd (see Barry Nelson - den bortglömde Bond).

This movie infographic (excluding the 2015 film, and the unofficial films) is from The Economist.


The Bond character

James Bond has been portrayed in films officially by six different actors, but the character remains essentially the same, although somewhat different from the one depicted in the books.

In early 1997, the monthly magazine Men's Health published an article in which doctors and psychologists commented on the life and lifestyle of the Bond character, the world's most un-secret secret agent (see Sprit, kvinnor och cigarretter tog livet av James Bond). The results were not good — Bond was either dead or close to it, as he was a paranoid, impotent alcoholic.

Bond's psychological profile was that of an emotionally stunted psychopath of type A who suffers from post-traumatic stress. According to Fleming's books, Bond was orphaned at age 11 (his parents died in a mountaineering accident), he lost his virginity in a brothel in Paris at 16, and killed his first mistress the following year. An ideal man to be a licensed assassin.

His massive daily alcohol consumption (all carefully documented in both the books and films) makes him a category 3 alcoholic. This means that he couldn't possibly have done his actual job competently; and it should also have led to violent temper outbursts (which may explain the government-sanctioned killing sprees). The liquor should also have led to a shrinking of his genitals, and have damaged his liver to the extent that it could no longer break down estrogen, so that he started to develop breasts and become impotent. His well-documented sexual excesses would also make him a prime candidate for sexually transmitted diseases. On top of this, the books (but not the films) also document a comprehensive smoking habit.

Bond was, of course, a form of wish-fulfillment for his creator, Ian Fleming, who was also a heavy drinker and smoker. He died of a heart attack at age 56, an age that Bond himself could not possibly have out-lived. Bond was more in danger from his own lifestyle than from SMERSH, or anyone else bent on world domination.

Bond is thus more a collection of memes than an actual character. This infographic is from the GBShowPlates website, and summarizes Bond's lifestyle.


The Bond drinks

Just about every aspect of Bond's career has been analyzed, and ranked, from the music to the cars to the watches, and most especially the women (the so-called "Bond girls"). However, much of the interest seems to lie in the booze, which is what we will look at here.

Along with coffee (and, once, tea), Bond has consumed copious amounts of alcohol, which he tends to drink alone, or in private settings. He is also what is known as a "label drinker", in that the brand is at least as important as the bottle's contents. This is a gift for the liquor industry, who, along with the car industry, are perpetually looking for opportunities for "brand placement" in films and sporting events. Fleming was chastised for introducing this into his books, but he simply replied that it was an attempt to round-out the character.

As far as the novels are concerned, they have received special medical attention by Graham Johnson, Indra Neil Guha, Patrick Davies (2013. Were James Bond’s drinks shaken because of alcohol induced tremor? British Medical Journal 347: f7255). They recorded every drink consumed in every book, calculated the number of alcohol units involved, and then converted that to daily intake (since the books are quite clear about their time span).

Their results are summarized in this infographic, from their article.


Basically, the medical results were as before:
Across 12 of the 14 books, 123.5 days were described, though Bond was unable to consume alcohol for 36 days because of external pressures (admission to hospital, incarceration, rehabilitation). During this time he was documented as consuming 1150.15 units of alcohol. Taking into account days when he was unable to drink, his average alcohol consumption was 92 units a week (1150 units over 87.5 days). Inclusion of the days incarcerated brings his consumption down to 65.2 units a week. His maximum daily consumption was 49.8 units (From Russia with Love day 3). He had 12.5 alcohol free days out of the 87.5 days on which he was able to drink.
Furthermore, when we plotted Bond's alcohol consumption over time, his intake dropped in the middle of his career but gradually increased towards the end. This consistent but variable lifetime drinking pattern has been reported in patients with alcoholic liver disease.
UK NHS [National Health Service] recommendations for alcohol consumption state that an adult male should drink no more than 21 units a week, with no more than 4 units on any one day, and at least two alcohol free days a week. James Bond's drinking habits are well in excess of each of these three parameters. This level of consumption makes him a category 3 drinker (>60 g alcohol / day) and therefore in the highest risk group for malignancies, depression, hypertension, and cirrhosis. He is also at high risk of suffering from sexual dysfunction, which would considerably affect his womanising.
Analyzing the films is more difficult. A number of people have tackled this task, including Nerdist, The Grocer, and Atomic Martinis (now defunct, but repeated on the website of the world's only James Bond Museum, in Sweden), and David Leigh. The basic problem seems to be whether the alcohol is "spotted either in hand, glass or in the background". Also, "The major problem is 007’s frequent enjoyment of multiple bottles of champagne, or portions of bottles of liquor ... it is often impossible to determine exactly how many separate drinks came from a given bottle."

The following infographic (not including the 2015 movie or the unofficial films) is derived from one produced at Buddy Loans. However, some of the people at Reddit were not happy with the original, so it was redesigned, as shown here.


The people at Nerdist took the data from this film infographic, converted it from units of alcohol to grams of alcohol, and then used this to estimate Bond’s total alcohol content. This yields a Blood Alcohol Content of 3.7%. "While some humans have survived a BAC of past 1%, it generally holds that anything past 0.5% will either kill you or leave you seriously poisoned. Therefore ... Bond’s tipsy tally is enough to put a man past a safe limit seven times over."

At The Grocer, they have also pointed out the relative booziness of the various Bond incarnations, by calculating the average intake per film by each actor, in units of alcohol:
Sean Connery
George Lazenby
Roger Moore
Timothy Dalton
Pierce Brosnan
Daniel Craig
11
  9
11
  4.5
12
20
Finally, we need a phylogenetic network, of course. I collated the presence/absence of each drink type for each book and movie (excluding the 2015 film) from the book by David Leigh (2012. The Complete Guide to the Drinks of James Bond, 2nd edition. Kindle), and then updated this where it clearly disagrees with other sources. (For example, no mention is made of sherry, and yet it is involved in one of the most popular Bond scenes from the film version of Diamonds are Forever.) I then analyzed the data using a NeighborNet. (James Bond Memes has tried an ordination analysis of the same data source.)


The books are shown in red, and the early films starring Connery and Lazenby are shown in blue (including Connery's later Never Say Never Again). These books and films are almost all at the top and right of the network, indicating that they have a distinct collection of drink types compared to the later films. I suspect that this reflects increasing use of "product placements" in the films. The only book plus movie combination that has similar drinks is You Only Live Twice. Interestingly, the Skyfall movie (from 2012) seems to return to the drinks genre of the earlier works, even though the alcohol consumption is much higher. The most unusual works were the Goldfinger and On Her Majesty's Secret Service books, where a number of drink styles were consumed that appeared nowhere else in the canon.

As noted by Johnson et al. (quoted above):
Despite his alcohol consumption, [Bond] is still described as being able to carry out highly complicated tasks and function at an extraordinarily high level. This is likely to be pure fiction.

Grape harvest dates as proxies for global warming


Phenological patterns are often highly correlated with temperatures. As noted by Chuine et al. (2004):
Biological and documentary proxy records have been widely used to reconstruct temperature variations to assess the exceptional character of recent climate fluctuations. Grape-harvest dates, which are tightly related to temperature, have been recorded locally for centuries in many European countries. These dates may therefore provide one of the longest uninterrupted series of regional temperature anomalies (highs and lows).
Harvest dates of grapes in western Europe (used for wine-making) are of especial interest because they constitute long phenological records, as a result of the fact that the harvest dates are usually officially decreed, based on the ripeness of the grapes. In other words, we have historical records for many locations over many years.

Daux et al. (2012) have compiled many of these records into a publicly accessible database archived at the World Data Center for Paleoclimatology.

This database comprises time series for 380 locations, mainly from France (93% of the data) as well as from Germany, Switzerland, Italy, Spain and Luxemburg. The series have variable lengths up to 479 years, with the oldest harvest date being for 1354 CE in Burgundy. The series are grouped into 27 regions "according to their location, to geomorphological and geological criteria, and to past and present grape varieties." These regions are shown in the map.


Normally, such data would simply be graphed as a time series for each region. However, as usual in this blog, we can examine these data using a phylogenetic network, to perform an exploratory data analysis. However, most of the data are actually "missing", because most of the time series have time gaps or cover only short periods. So, to create a more complete dataset I have extracted the data for the years 1800-1880, inclusive, because for this period 17 of the regions have mostly a complete series.

Two of the time series are shown in the first graph. This shows that the two time series are highly correlated, as are most of them. In this case, the correlation coefficient is 0.87.


I then used the gower distance to calculate the similarity of the different years and regions, based on the harvest dates (the gower measure is needed in order to deal with the fact that some of the data are still missing). This was followed by a neighbor-net analysis to display the between-region and the between-year similarities as two phylogenetic networks.

Only the first network is shown here. Regions that are closely connected in the network are similar to each other based on the variation in their harvest dates through time, and those that are further apart are progressively more different from each other.


Many of the patterns here are to be expected, based on the geographical proximities of the regions, but some are not. For example, Ile de France, Champagne and Vendée - Poitou Charente are all in northern France (see the map) while Bordeaux is in the south-west, and the Rhone Valley regions are in the south-east. As Le Roy Ladurie & Baulant (1980) have noted, the vineyards of northern and central France are in a different climatic zone from the wine regions of southern France (to the south of the Geneva parallel) and those of western France (west of the Chateau-du-Loire meridian).

Similarly, at the other end of the network, the Lower Loire region is not geographically located near any of the associated regions in the network. Possibly the most unexpected pattern, then, is the network separation of the Upper and Lower regions of the Loire Valley, which are the two regions whose time series are graphed above.

Clearly, the network is displaying only quite small differences between the time series. That is, the time patterns are very consistent across the regions, which does indeed make them useful for studying past temperature patterns.

References

Isabel Chuine, Pascal Yiou, Nicolas Viovy, Bernard Seguin, Valérie Daux, Emmanuel Le Roy Ladurie (2004) Grape ripening as a past climate indicator. Nature 432: 289-290.

V. Daux, I. Garcia de Cortazar-Atauri, P. Yiou, I. Chuine, E. Garnier, E. Le Roy Ladurie, O. Mestre, J. Tardaguila (2012) An open-database of grape harvest dates for climate research: data description and quality assessment. Climate of the Past 8: 1403-1418.

Emmanuel Le Roy Ladurie and Micheline Baulant (1980) Grape harvests from the fifteenth through the nineteenth centuries. Journal of Interdisciplinary History 10: 839-849.

A century of French wine vintages


It has been quite some time since I have produced a network-based exploratory data analysis (EDA) of some multivariate dataset, so it could be time to do so again.

In the wine industry, it is common to provide quality scores for the different vintages from particular wine-producing regions. These so-called vintage charts are intended to tell us how the harvest quality has varied from vintage to vintage. They are often disparaged, because they simplify the complexities of each harvest (where there can be considerable spatial variation) down into a single number. They also make little sense if a single number is applied to a very large area, which often occurs in practice.

Nevertheless, they can be an interesting and informative guide to the general features of each vintage, especially if they cover a long period of time.

My interest in this concept comes from the fact that I have recently started a blog about wine: The Wine Gourd. In the interests of doing something different to every other wine blogger, this blog delves into the world of wine data, instead of the usual reviews of recently released wines. The intention is to ferret out some of the interesting stuff, and to bring it out into the light, for everyone to see. Hopefully, this will be both interesting and informative.

French wine vintages

The Cavus Vinifera web site has produced vintage charts for several of the wine-producing regions of France, from the year 1900 to the present. This is very unusual, as most vintage charts cover a much shorter period of time. This circumstance thus provides the opportunity to compare these French regions over the past century, to investigate to what extent vintage variation is correlated among these areas.

Each vintage from 1900-2014 has been rated on a scale of 0-20. The region and wines covered by the entire time span include:
   Région de Bordeaux (rouge)
   Région de Bordeaux (blanc)
   Région de Bordeaux (liquoreux)
   Région de la Bourgogne (rouge)
   Région de la Bourgogne (blanc)
   Région du Rhône (Nord)
   Région du Rhône (Sud)
   Région du Loire (rouge)
   Région de la Champagne
   Région du Beaujolais

As usual, we can use a phylogenetic network to visualize these data, with the network being used as a form of exploratory data analysis. I first used the manhattan distance to calculate the similarity of the different years and regions, based on the quality scores. This was followed by a neighbor-net analysis to display the between-region and the between-year similarities as two phylogenetic networks.

The network for the ten regions is shown in the first graph. Regions that are closely connected in the network are similar to each other based on the variation in their vintage quality scores through time, and those that are further apart are progressively more different from each other.


Not unexpectedly, the different wines from the same regions form neighborhoods: the three wines types from Bordeaux (in south-western France); the three wines from Burgundy and Beaujolais (along the Saône River in eastern France); and the two wines from the Rhône River (in the south-east). However, unexpectedly, the Loire wine, from western France, is associated with the Rhône wines, while the Champagne region, in northern France, is somewhat isolated.

The network for the 115 years is shown in the second graph. In this case, years that are closely connected in the network are similar to each other based on the vintage quality scores averaged across all of the regions, and those that are further apart are progressively more different from each other.


Here, the years form a gradient from the poorest-quality years, at the top, to the best-quality vintages at the bottom. Only four of the vintages are labeled, but the vintages at the top of the network include 1902, 1910, 1913, 1930, 1931, and 1968. The vintages at the bottom of the graph include: 1929, 1945 and 1947, followed by 1928, 1949, 1989 and 1990, and then 1906, 1953, 1959, 1961 and 2005.

Note that the 1930s were generally not a good time for wine-making in France, and nor were the 1910s (although 1906 was an early century exception). The 1940s and 1950s, on the other hand, were generally good times for wine production.

The 1910 vintage stands out as particularly poor, with none of the regions scoring more than 10 out of 20 for their grape harvest, and both Burgundy wines scoring 0. This contrasts with the best years, where no region scored less than 16 out of 20.

Needless to say, the years stacked in the middle of the graph were variable, with some regions having a good time in a particular year and some having a bad time in that same year. This is the normal state of affairs.