New paper: Rapid host switching in Campylobacter

Our new open access paper Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections was published last week in the ISME Journal.

Figure from paper 
With Bethany Dearlove, Sam Sheppard and colleagues, we investigated common strains of campylobacter, the most frequent cause of bacterial gastroenteritis worldwide. Campylobacter infection is associated with food poisoning, particularly contaminated chicken. But in previous work, we found that certain strains (the ST-21, ST-45 and ST-828 complexes) are often found contaminating a range of meat and poultry, making it difficult to trace the source of human infection.

That previous work was based on partial genome sequencing known as MLST. In MLST, less than 1% of the information in the genome is captured. Now that whole genome sequencing is available, the expectation was that we should be able to distinguish easily between between ST-21, 45 and 828 strains contaminating poultry versus beef versus lamb, and so on.

What we found was surprising. Instead of these strains harbouring previously unobserved sub-structure that allowed them to be associated with different animal sources, we found rapidly mixing populations undergoing extremely fast transmission between animal species, with campylobacter strains ricocheting among animal species on a timescale of just a few years. This is faster than they can accumulate enough mutations to differentiate populations colonizing different animal species.

Our results present an unforeseen roadblock to tracing transmission with whole genome sequencing, and suggests these strains are adapted to a generalist lifestyle, shedding new light on the ecology of this pathogen. These findings push back against the tide of opinion that whole genome sequencing is necessarily a panacea for detecting transmission, and demonstrate that going forwards, a detailed understanding of the biology of zoonotic bacteria (those transmitting between multiple species) and intensive sampling of potential sources are essential for effectively tracing the source of human infection.

World Health Day: Food-borne disease theme

For World Health Day 2015, the group's research into food-borne campylobacter infection was featured on the Nuffield Department of Medicine's home page. The piece features recent work Bethany Dearlove and I have conducted into zoonotic (animal-human) transmission with Sam Sheppard. The paper is currently under review, and a preprint can be downloaded from the website.

Coalescent inference for infectious disease

Today my student Bethany Dearlove has her first paper published, called Coalescent inference for infectious disease: meta-analysis of hepatitis C. In this paper, published in Philosophical Transactions of the Royal Society B, we have developed coalescent-based population genetics methods for popular, deterministic, epidemiological models known as SI (susceptible-infectious), SIS (susceptible-infectious-susceptible) and SIR (susceptible-infectious-recovered). By implementing these methods in BEAST, we were able to re-analyse previously published hepatitis C virus datasets and directly estimate epidemiological parameters. Our results show that, in the absence of co-infection, the widely-used exponential growth and logistic growth models of changing population size correspond directly to SI and SIS dynamics. We were also able to examine the limitations to genetic approaches to reconstructing epidemiological dynamics.

This paper appears as part of an issue on Next-generation molecular and evolutionary epidemiology of infectious disease, which accompanies a Royal Society discussion meeting organized by Oli Pybus, Christophe Fraser and Andrew Rambaut. The Royal Society has made audio recordings of the talks at this meeting, and the accompanying satellite meeting, available online, including my talk on Bethany's paper.

Group Member Profiles Updated

Richard Everitt and Bethany Dearlove, postdoctoral scientist and D.Phil. student in my lab have posted their profiles and research interests to my website. Both joined in October, Richard from the University of Bristol where he was Brunel Fellow in Statistics and Bethany from the University of Reading where she read a masters in Biometry.

Richard is investigating patterns of genetic diversity and linkage disequilibrium in Staphylococcus aureus, while Bethany is studying the transmission dynamics of norovirus using population genetics and epidemiological modelling. Both are funded jointly by the UKCRC project Modernising Medical Microbiology and the Nuffield Department of Clinical Medicine. For more information, see their individual profiles.