New paper: Antimicrobial resistance determinants are associated with Staphylococcus aureus bacteraemia and adaptation to the healthcare environment

Staphylococcus aureus is a leading cause of infectious disease deaths in all countries, with bloodstream infection leading to sepsis a major concern. This new study, published in November in Microbial Genomics, reports genes and genetic variants in Staph. aureus associated severe disease vs asymptomatic carriage, and healthcare vs community carriage.

Our genome-wide association study of 2000 bacterial genomes showed that antibiotic resistance in Staph. aureus is associated with severe disease and the hospital environment:

  • A mutation conferring trimethoprim resistance (dfrB F99Y) and the presence of a gene conferring methicillin resistance (mecA) were both associated with bloodstream infection vs asymptomatic nose carriage.
  • Separately, we demonstrated that a mutation conferring fluoroquinolone resistance (gyrA L84S) and variation in a gene involved in resistance to multiple antibiotics (prsA) were preferentially associated with healthcare-associated carriage vs community-acquired carriage.

The implication – that antibiotic resistance genes may provide survival advantages which mechanistically contribute to the development of disease – is important in the face of the continued global rise of antibiotic resistance.


We were also able to shed light on a controversy as to whether different strains of Staph. aureus differ in their propensity to cause severe disease. Interest in this question dates back decades in the literature, and contradictory studies, often based on modest sample sizes, have reached different conclusions. Our comparatively large study, using a whole-genome method that we previously published in Nature Microbiology, found that all strains of Staph. aureus are equally likely to cause severe disease vs asymptomatic carriage.




New paper: PVL toxin associated with pyomyositis


In a new collaborative study published this week in eLife, we report a strong association between Staphylococcus aureus that carry the PVL toxin and pyomyositis, a muscle infection often afflicting children in the tropics.

Catrin Moore and colleagues at the Angkor Children's Hospital in Siem Reap, Cambodia, spent more than a decade collecting S. aureus bacteria from pyomyositis infections in young children, and built a comparable control group of S. aureus carried asymptomatically in children of similar age and location.

When Bernadette Young in our group compared the genomes of cases and controls using statistical tools we developed, she found some strong signals:

  • Most, but not all, pyomyositis was caused by the CC-121 strain, common in Cambodia.
  • The association with CC-121 was driven by the PVL toxin which it carries.
The ability to pinpoint the association to PVL came about because (i) a sub-group of CC-121 that lacked PVL caused no pyomyositis and (ii) pyomyositis-causing S. aureus from backgrounds that rarely caused pyomyositis were unusual in also possessing PVL.

The strength of the PVL-pyomyositis association was extraordinarily strong, so strong that PVL appeared all-but necessary for disease. Moreover, disease appeared to be monogenic, with no other genes involved elsewhere in the bacterial genome. To discover an apparently monogenic disease mechanism for a common disease is very unusual nowadays.

The discovery has immediate practical implications because it draws parallels between pyomyositis and toxin-driven bacterial diseases like tetanus and diphtheria that have proven amenable to immunization. The fact that anti-PVL vaccines have already been developed in other contexts offers hope for the future treatment of this debilitating tropical infection.

Our study throws much-needed light on a subject that has been the subject of heated debate over previous years. Many bacterial toxins, PVL included, have been implicated in diverse S. aureus disease manifestations, often without sound evidence. Because PVL is known to contribute to angry, pus-filled skin infections, and has been observed in bacteria causing rare and severe S. aureus infections, some authors have implicated it in dangerous diseases including necrotizing pneumonia, septic arthritis and pyomyositis, but detailed meta-analyses have dismissed these claims as not substantiated. Our GWAS approach offers unprecedented robustness over previous generations of candidate gene studies by accounting for bacterial genetic variation across the entire genome.

If you are interested, please take a closer look at the paper.

New paper: Severe infections emerge from commensal bacteria by adaptive evolution

Published this month in eLife, our new paper on the evolution and adaptation of Staphylococcus aureus during infection.

This study shows that the emergence of life-threatening infections of the major pathogen Staphylococcus aureus from bacteria colonizing the nose is associated with repeatable adaptive evolution inside the human body.

First author Bernadette Young has summarized the paper's findings on the Modernising Medical Microbiology blog.


The Rsp virulence regulator: new review in Trends in Microbiology

In the September issue of Trends in Microbiology, Mark Smeltzer casts the spotlight on the story of rsp, a virulence regulator in Staphylococcus aureus that evolves within infected patients and may play a role in disease.

The new review covers recent work on the rsp gene including a series papers that my collaborators and my group have contributed: 
Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation.
Das, S., Lindemann, C., Young, B. C., Muller, J., Österreich, B., Ternette, N., Winkler, A.-C., Paprotka, K., Reinhardt, R., Förstner, K. U., Allen, E., Flaxman, A., Yamaguchi, Y., Rollier, C. S., Van Diemen, P., Blättner, S., Remmele, C. W., Selle, M., Dittrich, M., Müller, T., Vogel, J., Ohlsen, K., Crook, D., Massey, R., Wilson, D. J., Rudel, T., Wyllie, D. H., and M. J. Fraunholz (2016)
Proceedings of the National Academy of Sciences USA 113: E3101–E3110. (abstract pdf)

Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus.
Laabei, M., Uhlemann, A.-C., Lowy, F. D., Austin, E. D., Yokoyama, M., Ouadi, K., Feil, E., Thorpe, H. A., Williams, B., Perkins, M., Peacock, S. J., Clarke, S. R., Dordel, J., Holden, M., Votintseva, A. A., Bowden, R., Crook, D. W., Young, B. C., Wilson, D. J., Recker, M. and R. C. Massey (2015)
PLoS Biology 13: e1002229. (abstract pdf)

Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease.
Young, B. C., Golubchik, T., Batty, E. M., Fung, R., Larner-Svennson, H., Votintseva, A., Miller, R. R., Godwin, H., Knox, K., Everitt, R. G., Iqbal, Z., Rimmer, A. J., Cule, M., Ip C. L. C., Didelot, X., Harding, R. M., Donnelly, P. J., Peto, T. E., Crook, D. W., Bowden, R. and D. J. Wilson (2012)
Proceedings of the National Academy of Sciences USA 109: 4550-4555. (abstract pdf F1000)

PNAS paper on staphylococcal evolution during infection

Today in PNAS Early Edition my colleagues and I have a paper published reporting the genome evolution of Staphylococcus aureus during the transition from prolonged nasal carriage to invasive disease. Since Staph. aureus, a major bacterial cause of life-threatening infections, is carried without symptoms by a quarter of healthy adults, a natural question is to ask what genetic changes - if any - accompany the transition to invasive disease. The opportunity to pursue this question arose from a detailed epidemiological investigation of asymptomatic Staph. aureus nasal carriage set up by colleagues of mine including Derrick Crook and Kyle Knox. The study has recruited over 1,000 participants in Oxfordshire since it began running in October 2008. One participant developed a bloodstream infection that was indistinguishable from the strain of Staph. aureus persistently carried in the nose for the previous 13 months. Members of the Modernising Medical Microbiology consortium, led by Derrick and Rory Bowden, sequenced the genomes of 68 bacterial colonies isolated from the nasal and blood samples from this participant, and 101 colonies from nasal samples from two other participants that did not go on to develop disease. Bernadette Young and Tanya Golubchik analyzed the genome evolution of these bacterial populations, discovering an unusual pattern in the mutations that occurred between nasal carriage and invasive disease: mutations that led to prematurely truncated proteins were significantly over-represented, including one in a gene previously associated with virulence in bacteria. To know more, read the full open access article.

Evolutionary Genetics for Translational Research

This month saw the 2010 Infectious Disease Genomics & Global Health meeting at Hinxton, which attracted a good number of people involved in the Modernising Medical Microbiology consortium, of which I am a participant. Rory Bowden and Rosalind Harding presented our group's progress on piecing together intra-host evolution of Staphylococcus aureus and reconstructing transmission chains in Clostridium difficile. My role in the projects has so far been one of assisting in ongoing evolutionary analyses and collaborating in the design of bioinformatics pipelines to make sense of the raw Illumina short-read sequencing data. At the same time I have been devising research plans for my own group, and spending time in the lab preparing sequencing experiments with Bernadette Young. In the poster I presented at Hinxton (available here), and at an internal talk I gave earlier in the year (slides here) I set out what I see as the strengths of Evolutionary Genetics for addressing translational medical problems including
  • Tracking the transmission of hospital-acquired pathogens
  • Understanding transmission dynamics at the population level
  • Identifying the mechanistic and adaptive basis of disease
  • Explaining how pathogens emerge, persist and spread globally
Of the many stimulating talks at the Hinxton conference, those by Dominic Kwiatkowski on the population genomics of Plasmodium falciparum, Christophe Fraser on "hyper-recombination" in Streptococcus pneumoniae and Paul Keim on the challenges for understanding the population genetics of non-clonal bacterial pathogens particularly interested me. Prof Keim gave an equally captivating talk the following day at the Health Protection 2010 meeting in Warwick on his microbial forensics work tracing the origin of Bacillus anthracis spores used in bioterrorism attacks. What I especially admired about his presentations was the dogged pursuit of new methods and ways of thinking in order to better address the biological questions at hand.