Publishing a science book – Lesson #1: The publisher is always right about everything

Don't bother trying to reason with a publisher. All of them have different views on proper style and every single one of them is absolutely certain that their style is the only correct one.

I'm in the middle of the copyedit stage of my book. This is the stage where a copyeditor goes through your manuscript and makes any corrections to spelling and grammar. This is a lot of work for any copyeditor having to deal with one of my manuscripts and I greatly appreciate the effort. My book is a lot better now than it was a few weeks ago. (Who knew that there was only one l in canceled?

It's also the stage where the publisher imposes their particular style on the manusript and that can be a problem. I'll document some of the issues in subsequent posts but to give you an example, consider the titles of books in the reference list. I wrote it like this: The Selfish Gene and Molecular and Genome Evolution. This is not in line with my publisher's handbook of style so the titles were converted to lowercase as in: The selfish gene and Molecular and genome evolution. I objected, pointing to numerous other science books that used the same titles that are on the covers of the books and suggesting that my readers were more familiar with The Selfish Gene than with The selfish gene.

I was overruled by my publisher who noted that they make their style choices for good reasons—it's for "consistency, clarity, and ease of reading." I assume that publishers, such as Oxford, would make the same argument while insisting that the title should be The Selfish Gene.

In case you ever find yourself in this position, you should keep in mind that your contract will almost certainly say that the publisher has complete control of your book and they can make any changes they want as long as it doesn't affect the meaning of what you wrote.

Here's what it says in my contract, "The Publisher shall publish the Author's work in whatever style and format it thinks most suitable ... While the Publisher may, in its sole discretion, consult the Author with respect to said style and format, the Publisher retains the right to make all final decisions on matters of format, design, selling price and marketing."

I was aware of some issues with inappropriate covers and tiles in the past so I had an extra sentence added to the contract that said, "The Publisher and Author will discuss and agree upon the title and cover design." It's a good thing I put that in because the publisher was pressuring me to change the title of the book and I was able to resist.

Authors can't win most fights over style and format. I've been discussing the publishing of science books with a number of other authors over the past few months and several of them told me not to bother trying to argue with a publisher because they will never give in. They have a set style for all books and they won't make an exception for an individual author no matter how good an argument you make.

I didn't listen to those other authors. Silly me.

I'm thinking of trying to write a standard set of guidelines that scientists could put into their contracts to cover the most egregious style restrictions. It might be helpful if all science writers would insist on inserting these guidelines into their contracts.


How not to write a Nature abstract

A friend recently posted a figure on Facebook that instructs authors in the correct way to prepare a summary paragraph (abstract) for publication in Nature. It uses a specific example and the advice is excellent [How to construct a Nature summary paragraph].

I thought it might be fun to annotate a different example so I randomly selected a paper on genomics to see how it compared. The one that popped up was An integrated encyclopedia of DNA elements in the human genome.


What I’m reading these days

So many books ... so little time.


Looking for falsified images in Alzheimer’s study

Charles Piller, for Science, highlights the work of Matthew Schrag, who uses image analysis to look for falsified data, recently scrutinizing a link between a protein and Alzheimer’s:

“So much in our field is not reproducible, so it’s a huge advantage to understand when data streams might not be reliable,” Schrag says. “Some of that’s going to happen reproducing data on the bench. But if it can happen in simpler, faster ways—such as image analysis—it should.” Eventually Schrag ran across the seminal Nature paper, the basis for many others. It, too, seemed to contain multiple doctored images.

Science asked two independent image analysts—Bik and Jana Christopher—to review Schrag’s findings about that paper and others by Lesné. They say some supposed manipulation might be digital artifacts that can occur inadvertently during image processing, a possibility Schrag concedes. But Bik found his conclusions compelling and sound. Christopher concurred about the many duplicated images and some markings suggesting cut-and-pasted Western blots flagged by Schrag. She also identified additional dubious blots and backgrounds he had missed.

Tags: , ,

Operative concepts

Gave a talk “The Good Species” yesterday (26 April 2022) to the HPS crowd at UniMelb. The discussion went a way I didn’t expect: classification…

New edited species book

So, what have I been doing for the Covid Lockdown. Many things. This is one of them. The CRC Press link is here, but I’ll…

Scientists with bad data

Tim Harford warns against bad data in science:

Some frauds seem comical. In the 1970s, a researcher named William Summerlin claimed to have found a way to prevent skin grafts from being rejected by the recipient. He demonstrated his results by showing a white mouse with a dark patch of fur, apparently a graft from a black mouse. It transpired that the dark patch had been coloured with a felt-tip pen. Yet academic fraud is no joke.

Tags: , ,

Is science the only way of knowing?

Most of us learned that science provides good answers to all sort of questions ranging from whether a certain drug is useful in treating COVID-19 to whether humans evolved from primitive apes. A more interesting question is whether there are any limitations to science or whether there are any other effective ways of knowing. The question is related to the charge of "scientism," which is often used as a pejorative term to describe those of us who think that science is the only way of knowing.

I've discussed these issue many times of this blog so I won't rehash all the arguments. Suffice to say that there are two definitions of science; the broad definition and the narrow one. The narrow definition says that science is merely the activity carried out by geologists, chemists, physicists, and biologists. Using this definition it would be silly to say that science is the only way of knowing. The broad definition can be roughly described as: science is a way of knowing that relies on evidence, logic (rationality), and healthy skepticism.

The broad definition is the one preferred by many philosophers and it goes something like this ...

Unfortunately neither "science" nor any other established term in the English language covers all the disciplines that are parts of this community of knowledge disciplines. For lack of a better term, I will call them "science(s) in the broad sense." (The German word "Wissenschaft," the closest translation of "science" into that language, has this wider meaning; that is, it includes all the academic specialties, including the humanities. So does the Latin "scientia.") Science in a broad sense seeks knowledge about nature (natural science), about ourselves (psychology and medicine), about our societies (social science and history), about our physical constructions (technological science), and about our thought construction (linguistics, literary studies, mathematics, and philosophy). (Philosophy, of course, is a science in this broad sense of the word.)

Sven Ove Hanson "Defining Pseudoscience and Science" in Philosophy of Pseudescience: Reconsidering the Demarcation Problem.

Clearly, scientific education ought to mean the implanting of a rational, sceptical, experimental habit of mind. It ought to mean acquiring a method – a method that can be used on any problem that one meets – and not simply piling up a lot of facts.

George Orwell

Using the broad definition, one can make a strong case that science is the only proven way of gaining knowledge. All other contenders are either trivial (mathematics), wrong (religion) or misguided (philosophy). So far, nobody that I know has been able to make a convincing case for any non-scientific way of knowing. Thus, I adopt as my working hypothesis the view that science is the only way of knowing.

Last year, Jerry Coyne revived the debate by posting an article about our favorite philosopher Maarten Boudry.1 Boudry also adopts the broad definition of science and agrees that there are no other ways of knowing [Scientism schmientism! Why there are no other ways of knowing apart from science (broadly construed)]. As I mentioned above, the debate is related to the charge of "scientism," which is often levelled against people like Boudry and Coyne (and me).

The debate over science as a way of knowing hasn't been settled. There are still lots of philosphers fighting a rearguard action to save philosophy and the humanities from the science invasion. Boudry and Massimo Pigliucci have put together a series of papers on the debate and it's a must-read for anyone who participates in this war. One of the defenders of philosophy in this book is Stephen Law, who is active on Facebook so you can engage in the debate there.

Stephen claims that there are two kinds of questions to which science cannot supply answers: moral questions and philosophical questions. Neither of those make any sense to me. Moral questions are essentially questions about the best way for societies to behave and the answers to those questions clearly depend on evidence and on observations about existing societies. As for philosophical questions, Law describes them like this,

On my view, philosophical questions are, for the most part, conceptual rather than scientific or empirical, and the methods of philosophy are, broadly speaking, conceptual rather than scientific or empirical.

Stephen Law recognizes the distinction between "questions" and "knowledge" and, while he defends philosophy as "valuable exercise," he admits that pure reason alone can't reveal reality.

So perhaps, there's at least this much right about scientism: armchair philosophical reflection alone can't reveal anything about reality outside of our own minds. However, as I say, that doesn't mean such methods are without value.

If you've read this far, then good for you! Read the ongoing debate between Jerry Coyne and Adam Gopnik [Are The Methods Used By Science The Only Ways Of Knowing?]. Now watch this lecture given by Jerry Coyne in India a few years ago to see if you can refute the idea that science is the only way of knowing.



1. That's Boudry on the right in a photo taken back in 2010 when he was just a graduate student attending a conference at the University of Toronto. He's with Stefaan Blanke. I also visited Maarten in Gent, Belgium a few years later.

Is science a social construct?

Richard Dawkins has written an essay for The Spectator in which he says,

"[Science is not] a social construct. It’s simply true. Or at least truth is real and science is the best way we have of finding it. ‘Alternative ways of knowing’ may be consoling, they may be sincere, they may be quaint, they may have a poetic or mythic beauty, but the one thing they are not is true. As well as being real, moreover, science has a crystalline, poetic beauty of its own.

The essay is not particularly provocative but it did provoke Jerry Coyne who pointed out that, "The profession of science" can be contrued as a social construct. In this sense Jerry is agreeing with his former supervisor, Richard Lewontin1 who wrote,

"Science is a social institution about which there is a great deal of misunderstanding, even among those who are part of it. We think that science is an institution, a set of methods, a set of people, a great body of knowledge that we call scientific, is somehow apart from the forces that rule our everyday lives and tha goven the structure of our society... The problems that science deals with, the ideas that it uses in investigating those problems, even the so-called scientific results that come out of scientific investigation, are all deeply influenced by predispositions that derive from the society in which we live. Scientists do not begin life as scientists after all, but as social beings immersed in a family, a state, a productive structure, and they view nature through a lens that has been molded by their social structure."

Coincidently, I just happened to be reading Science Fictions an excellent book by Stuart Ritchie who also believes that science is a social construct but he has a slighly different take on the matter.

"Science has cured diseases, mapped the brain, forcasted the climate, and split the atom; it's the best method we have of figuring out how the universe works and of bending it to our will. It is, in other words, our best way of moving towards the truth. Of course, we might never get there—a glance at history shows us hubristic it is to claim any facts as absolute or unchanging. For ratcheting our way towards better knowledge about the world, though, the methods of science is as good as it gets.

But we can't make progress withthose methods alone. It's not enough to make a solitary observation in your lab; you must also convince other scientists that you've discovered something real. This is where the social part comes. Philosophers have long discussed how important it is for scientists to show their fellow researchers how they came to their conclusions.

Dawkins, Coyne, Lewontin, and Ritchie are all right in different ways. Dawkins is talking about science as a way of knowing, although he restricts his definition of science to the natural sciences. The others are referring to the practice of science, or as Jerry Coyne puts it, the profession. It's true that the methods of science are the best way we have to get at the truth and it's true that the way of knowing is not a social construct in any meanigful sense.

Jerry Coyne is right to point out that the methods are employed by human scientists (he's also restricting the practice of science to scientists) and humans are fallible. In that sense, the enterprise of (natural) science is a social construct. Lewontin warns us that scientists have biases and prejudices and that may affect how they do science.

Ritchie makes a diffferent point by emphasizing that (natural) science is a collective endeavor and that "truth" often requires a consensus. That's the sense in which science is social. This is supposed to make science more robust, according to Ritchie, because real knowledge only emerges after carefull and skeptical scrutiny by other scientists. His book is mostly about how that process isn't working and why science is in big trouble. He's right about that.

I think it's important to distinguish between science as a way of knowing and the behavior and practice of scientists. The second one is affected by society and its flaws are well-known but the value of science as way of knowing can't be so easily dismissed.


1. The book is actually a series of lectures (The Massey Lectures) that Lewontin gave in Toronto (Ontario, Canada) in 1990. I attended those lectures.

Ill of the dead

I have found it necessary, in the course of this volume, to speak of the departed; for the misgovernment of the Royal Society has not…